1. **A**.

Given the conditions defined by the problem, Rolle's theorem states that there exists at least one value c in between a and b, exclusive such that $f'(c) = 0$

2. **C**.

Chain rule for $h(x) = f(g(x))$ is $f'(g(x))g'(x)$. So we have $(2(3x^2)+3)(6x)$ for x=2 and we get 324.

3. **B**.

Using u-substitution for $u = x+1$, we get the integral of $u^2 + u$ from 18 to 20, which we can integrate to get $\frac{2282}{3}$.

4. **E**.

The x^7 is hidden behind the other terms and since the power of the numerator is greater than the power of the denominator, the limit DNE.

5. **B**.

The cross sections have area y^2 , so the new integral is the integral from 0 to 5 of $(y)^2$. Since $y = x^2$, we want the integral from 0 to 5 of x^4 which is 625.

6. **B**.

L(x) = f(a) + f'(a)(x-a). In this case,
$$
f'(a) = \frac{1}{2\sqrt{a}}
$$
. Therefore, we have L(45) = f(49) + $\frac{1}{2\sqrt{49}}(45-49) = 7 - \frac{2-47}{7-7}$

7. **C**.

Looking at the problem we notice that the expansion of the entire product yields a numerator and denominator of equal powers and a starting coefficient of 1. The $2018ⁿ$ cancels with the 2018^{n+1} to make a single 2018. So the final expansion looks something

$$
018n^{4036} + \dots
$$

along the lines of $\frac{2010n + ...}{n^{4036} + ...}$. This converges to 2018.

8. **D**.

Using tabular, we get the expression $x^2 \cos x + 2x \sin x - 2 \cos x$. Evaluating from 0 to $\frac{\pi}{2}$ $\frac{\pi}{2}$ yields $\pi - 2$

9. **C**.

The 2nd fundamental theorem of calculus states that for a function $g(x)$ such that $f^{v(x)}$

$$
g(x) = \int_{u(x)} f(t)dt
$$

= 4x³ and u(x) = 3x², our answer is $12x^2$ sin $16x^6$ – 6x sin $(9x^4)$

10. **A**

I converges as a direct comparison to $\sum_{n=0}^{\infty}$ ($\frac{3}{4}$) $\frac{3}{4}$ $)^n$

II diverges by nth term test and L'Hôpital's as you initially get $\frac{\infty}{\infty}$

III diverges by Alternating Series Theorem as $sec3(x)$ is not monotonically decreasing.

IV diverges by nth term test as $\frac{(2x)!}{x}$ $\frac{(2x)!}{x-x}$ approaches infinity as the terms 2x, 2x-1, 2x-2... 2x-x contain x amount of terms each which is greater than x. Therefore, their product is greater than x^x already.

11. **A**

Use L'Hopitals: $(1-6/5*a^{1/5})/(1/4*a^{-3/4}-10/9*a^{1/9})$ Plug in a=1 and get 36/155. 36+155= 191

12. **D**

Use implicit to find that $3x^2 - \frac{x}{x}$ \mathbf{v} $d\mathcal{V}$ $\frac{dy}{dx} - ln y = e^x \frac{dy}{dx}$ $\frac{dy}{dx}$ + ye^x, isolating dy/dx and then diving by $x/y + e^x$ we get $3x^2y-ylny-y^2e^x$ $x+y e^x$

13. **A**

Taking the natural log of both sides gives lny= \sqrt{x} lnx. Taking the derivative of both sides gives $\frac{1}{\gamma}$ $d\nu$ $\frac{dy}{dx} = \frac{1}{2\sqrt{2}}$ $\frac{1}{2\sqrt{x}}lnx + \frac{\sqrt{x}}{x}$ $\frac{\sqrt{x}}{x}$. Multiplying by y gives $\frac{dy}{dx} = \frac{1}{2}$ $\frac{1}{2}x\sqrt{x} - \frac{1}{2}$ $rac{1}{2}$ lnx+x \sqrt{x} – $rac{1}{2}$ $\frac{1}{2}$. Factoring out $x\sqrt{x} - \frac{1}{2}$ $rac{1}{2}$ gives $x\sqrt{x} - \frac{1}{2}$ $\frac{1}{2}(\frac{1}{2})$ $\frac{1}{2}lnx + 1$). Plugging in 3 gives a=3, b=1/2, c=3, d=1. $2a+4b+c-d = 10$.

14. **D**

Setting the two functions equal to each other, we find that they intersect at the points (- $1/3/11/9$, $(0,0)$, and $(1,3)$.

$$
\left| \int_{-1/3}^{0} (3x^3 - x + 1) - (2x^2 + 1) \right| = 7/324
$$

$$
\left| \int_0^1 (3x^3 - x + 1) - (2x^2 + 1) \right| = 5/12
$$

Sum the two areas and we get 71/162

15. **C**

The expression in the integral can be expressed as the partial sum of $1/(x+1)+1/x+1/(x^2+1)$. Integrating, we get $ln(x^2+x)+tan^{-1}(x)$ and then we plug in x=1 to $x=\sqrt{3}/3$ to get $[\ln(\sqrt{3}/3 + 1/3) + \pi/4]$ - $[\ln(2) + \pi/3] = \ln(\sqrt{3}/6 + \frac{1}{6}) - \pi/12$

16. **B**

Taking the derivative of $f(x)$ gives $12x^3 + 132x^2 - 24x - 1440$. This factors into $12(x+10)(x+4)(x-3)$, so on the interval [0,1], f(x) is decreasing. By definition, a decreasing function is over approximated by a left hand riemann sum. (You can draw a decreasing curve and see that the riemann rectangles are taller than the curve). Therefore, II and III are correct.

17. E

Using the ratio test

$$
\lim_{n\to\infty}\left|\frac{\frac{4x^{n+1}}{(n+5)(n+4)!)}}{\frac{4x^n}{(n+4)!}}\right|
$$

This equals $\frac{x}{n+5}$. Since n is infinitely large, no set constant for x will result in a divergent series, so the bounds are $(-\infty, \infty)$.

18. D

 $f(0) = 2$, $f'(0) = 0$, $f''(0) = \frac{1}{2}$. Using $f(x) = (x^2+4)^{1/2}$, we find that Thus the second degree polynomial is $2 + \frac{1}{4}x^2$. Taking the integral, we get $2x + \frac{1}{12}x^3$. Plugging in $x = 2$, we get 40/3.

19. C

The cost function is $C(x)=16(24-x)+20(x^2+400)^{1/2}$, we set $C'(x)=-16+10(x^2+400)^{1/2}(2x)$ 0 and get x=80/3. We plug back into $\sqrt{(x^2+400)}$ and get 100/3

20. **D**

One can use the cosine double angle identity to make $\frac{1+cos^{2}(x)}{2x^{2}(x)}$ $\frac{(1+cos(x))}{(cos^2(x))}$ which simplifies to 1 $\frac{1}{2}\int \sec^2 x + \int \frac{1}{2}$ $\frac{1}{2}$ which equals $\frac{1}{2}tan(x) + \frac{1}{2}$ $\frac{1}{2}x + C$ after integrating

21. **A**

$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}
$$
\n
$$
\frac{dy}{dt} = \frac{1}{1+t^2}, \frac{dx}{dt} = \frac{1}{t\ln 10}
$$
\n
$$
\frac{dy}{dx} = \frac{t\ln 10}{1+t^2} \text{ using}
$$
\nquotient rule and dividing by $\frac{dx}{dt}$, $\frac{d^2y}{dt^2} = \frac{t(1-t^2)(\ln 10)^2}{(1+t^2)^2}$ and when $t = 2\sqrt{2}$ it is

$$
\frac{-14\sqrt{2}(ln10)^2}{81}
$$

22. **A**

Using the shell method, the volume about the y-axis would be $\int_1^5 x(\ln(x) + 5) dx$ if it were bounded by the x axis, but since the solid has a bottom boundary of $y=2$, our new

integral is
$$
\int_{1}^{3} x(\ln(x) + 5 - 2) dx
$$
, so the volume is $60\pi + 25\pi \ln 5$.

23. A

Using the taylor series for e^x , we find that

$$
e^{-x^2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^{2k}
$$

Taking the integral from $x=0$ to $x=3$, we get

$$
4\sum_{k=0}^{\infty} \left[\frac{(-1)^k}{k!(2k+1)} x^{2k+1} \right]_0^3
$$

Which is the same as

$$
\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k+1)} 4 \cdot 3^{2k+1}
$$

Factoring out a 3 from the exponent of 3^{2k+1} and then simplify 3^{2k} to 9^k which is answer choice A.

24. B

Since f(x) is odd,
$$
\int_{-2}^{0} f(x)dx = \int_{0}^{2} f(x)dx = 4
$$

\n
$$
\int_{0}^{8} f(x)dx = 17
$$

\n
$$
\int_{0}^{5} f(x)dx = 17
$$

\n
$$
\int_{0}^{-5} f(x)dx = 3
$$

\n
$$
\int_{0}^{-5} f(x)dx = \int_{0}^{5} f(x)dx = 3
$$

\n
$$
\int_{0}^{8} f(x)dx = 18 \int_{2}^{5} f(x)dx = \int_{2}^{8} f(x)dx - \int_{5}^{8} f(x)dx
$$

\n
$$
\int_{2}^{5} f(x)dx = 17 - 18 = -1
$$

\n25. E

The volume of a frustum is defined by $\frac{\pi h}{3}(R^2 + Rr + r^2)$, where R is the big radius, r is the small radius, and h is the height. Since the smaller radius is on the bottom, r always equals 10. Now we're only dealing with 2 variables. We can find h in terms of R because their ratio will be proportional to the ratio of the bowl. Therefore, we know that $h=3/5$ R. Our new volume formula is $V = \frac{\pi}{5}$ $\frac{\pi}{5}(R^3 + 10R^2 + 100R)$. Taking the derivative of both sides gets $\frac{dV}{dt} = \frac{\pi}{5}$ $\frac{\pi}{5}$ (3R² $\frac{dR}{dt}$ $\frac{dR}{dt} + 20R \frac{dR}{dt}$ $\frac{dR}{dt}$ + 100 $\frac{dR}{dt}$). Since we know that the height is 9 and h $=$ 3/5 R, we know that R=15 cm. Plugging in with the fact that the volume changes at a rate of 12, we get $\frac{dR}{dt}$ $\frac{dR}{dt} = \frac{12}{175}$ $\frac{12}{175\pi}$.

26. B

This is simply the integral of $f(x)-g(x) = x^2+x+3+1/x+1/x^2$ on the interval from -8 to -2. We have $1/3x^3+1/2x^2+3x+ln(lx) -1/x$ and can plug in the values of x= -2 and x= -8 and subtract.

27. **C**

 $AL = \int_{0}^{\sqrt{3}} \sqrt{\theta^2 + 1}$ $\int_0^{\sqrt{3}} \sqrt{\theta^2 + 1} d\theta$ using trig substitution of $\theta = \tan(x)$ we get $AL =$ $\int_{0}^{\frac{\pi}{3}} \sqrt{\tan^2(x) + 1}$ $\int_0^{\frac{\pi}{3}} \sqrt{\tan^2(x) + 1} \sec^2(x) dx = \int_0^{\frac{\pi}{3}} \sec^3(x)$ $\int_0^{\frac{1}{3}} \sec^3(x) dx$ which can be rearranged by integration by parts and the identity $tan^2 x + 1 = sec^2 x$: π

$$
AL = sec(x)tan(x)|\frac{\pi}{3} \text{ and } 0 - \int_0^{\frac{\pi}{3}} sec(x)tan^2(x) dx
$$

= $2\sqrt{3} - \int_0^{\frac{\pi}{3}} sec(x) (sec^2(x) - 1) dx = 2\sqrt{3} - AL + \int_0^{\frac{\pi}{3}} sec(x) dx$

 $sec(x)$ can be integrated into $ln|sec(x) + tan(x)|$ so the final steps are 2AL= $\sqrt{3} + ln|sec(x) + tan(x)| \frac{\pi}{3}$ $\frac{\pi}{3}$ and $0 = 2\sqrt{3} + ln(2 + \sqrt{3})$ thus $AL = \frac{1}{2}(2\sqrt{3} + ln(2 + \sqrt{3}))$

28. C

The given integral is the same as $\int_0^1 \frac{1}{t} dt$ $\frac{1}{x}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^n}{n}$ \overline{n} ∞ $n=1$ 1 $\sum_{n=1}^{\infty} \frac{1}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$ $(2n+1)^2$ $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=1}^{\infty} \frac{1}{(2n+1)^n}$ $\sqrt{(2n)^2}$ ∞ $n=1$ using the taylor series for $ln(x+1)$. 2

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$
 which can be found with sine inverse maclaurin series.
\n
$$
\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}
$$

\n
$$
\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24}
$$

\n
$$
\pi^2 = \pi^2
$$

$$
\frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}
$$

29.B

First we have ds/dt=4s. Integrating and simplifying we get s= Ce^{4t} . He's initially 3 ft³ so C=3 and we have $s=3e^{4t}$ for first 5 seconds. Plugging in t=5, we get his size as $3e^{20}$. The next five minutes require a new growth function. $ds/dt=4s-8s^2$. Integrating, we get $\ln[(s)/(2s-1)] = 4t+C$. Isolating s, we get s= $(Ce^{4t})/(2Ce^{4t}-1)$. The initial s is $3e^{20}$, which gives us $C=(3e^{20})/(6e^{20}-1)$. Over the next five seconds his size will be $[(3e^{20})/(6e^{20}-1)]$ 16*5 $3e^{100}$ $\frac{1}{20+1}$.

1)*
$$
e^{16*5}
$$
]/[2(3 e^{20})/(6 e^{20} -1)* e^{16*5} -1] = $\frac{3e^{16}}{6e^{100}-6e^{20}}$

30. D

Use partial fractions to get $1/(x+1)+2/(x+2)$ and integrate to get $ln[(x+1)(x+2)^{2}]$. Plug in $x=1$ to get ln(18) and $x=0$ to get ln(4). Subtract to get ln(9/2).