1. **A**.

Given the conditions defined by the problem, Rolle's theorem states that there exists at least one value c in between a and b, exclusive such that f'(c) = 0

2. C.

Chain rule for h(x) = f(g(x)) is f'(g(x))g'(x). So we have $(2(3x^2)+3)(6x)$ for x=2 and we get 324.

3. **B**.

Using u-substitution for u = x+1, we get the integral of $u^2 + u$ from 18 to 20, which we can integrate to get $\frac{2282}{3}$.

4. **E**.

The x^7 is hidden behind the other terms and since the power of the numerator is greater than the power of the denominator, the limit DNE.

5. **B**.

The cross sections have area y^2 , so the new integral is the integral from 0 to 5 of $(y)^2$. Since $y = x^2$, we want the integral from 0 to 5 of x^4 which is 625.

6. **B**.

L(x) = f(a) + f'(a)(x-a). In this case, f'(a) =
$$\frac{1}{2\sqrt{a}}$$
. Therefore, we have L(45) = f(49) + $\frac{1}{2\sqrt{49}}(45-49) = 7 - \frac{2}{7} = \frac{47}{7}$

7. **C**.

Looking at the problem we notice that the expansion of the entire product yields a numerator and denominator of equal powers and a starting coefficient of 1. The 2018ⁿ cancels with the 2018ⁿ⁺¹ to make a single 2018. So the final expansion looks something

$$018n^{4036} + \dots$$

along the lines of $\frac{2018n^{4036} + \dots}{n^{4036} + \dots}$. This converges to 2018.

8. **D**.

Using tabular, we get the expression $x^2 \cos x + 2x \sin x - 2 \cos x$. Evaluating from 0 to $\frac{\pi}{2}$ yields $\pi - 2$

9. **C**.

The 2nd fundamental theorem of calculus states that for a function g(x) such that

$$g(x) = \int_{u(x)}^{v(x)} f(t)dt$$

= 4x³ and u(x) = 3x², our answer is $12x^2 \sin 16x^6 - 6x \sin(9x^4)$

10. **A**

I converges as a direct comparison to $\sum_{n=0}^{\infty} (\frac{3}{4})^n$

II diverges by nth term test and L'Hôpital's as you initially get $\frac{\infty}{\infty}$

III diverges by Alternating Series Theorem as $sec_3(x)$ is not monotonically decreasing.

IV diverges by nth term test as $\frac{(2x)!}{x-x}$ approaches infinity as the terms 2x, 2x-1, 2x-2... 2x-x contain x amount of terms each which is greater than x. Therefore, their product is greater than x^x already.

11. **A**

Use L'Hopitals: $(1-6/5*a^{1/5})/(1/4*a^{-34}-10/9*a^{1/9})$ Plug in a=1 and get 36/155. 36+155= 191

12. **D**

Use implicit to find that $3x^2 - \frac{x}{y}\frac{dy}{dx} - lny = e^x \frac{dy}{dx} + ye^x$, isolating dy/dx and then diving by x/y+e^x we get $\frac{3x^2y - ylny - y^2e^x}{x + ye^x}$

13. **A**

Taking the natural log of both sides gives $\ln y = \sqrt{x} \ln x$. Taking the derivative of both sides gives $\frac{1}{y} \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{x}$. Multiplying by y gives $\frac{dy}{dx} = \frac{1}{2}x\sqrt{x} - \frac{1}{2}\ln x + x\sqrt{x} - \frac{1}{2}$. Factoring out $x\sqrt{x} - \frac{1}{2}$ gives $x\sqrt{x} - \frac{1}{2}(\frac{1}{2}\ln x + 1)$. Plugging in 3 gives a=3, $b=\frac{1}{2}$, c=3, d=1. 2a+4b+c-d=10.

14. **D**

Setting the two functions equal to each other, we find that they intersect at the points (-1/3/11/9), (0,0), and (1,3).

$$\left|\int_{-1/3}^{0} (3x^3 - x + 1) - (2x^2 + 1)\right| = \frac{7}{324}$$

$$\int_0^1 (3x^3 - x + 1) - (2x^2 + 1) \Big| = 5/12$$

Sum the two areas and we get 71/162

15. **C**

The expression in the integral can be expressed as the partial sum of $1/(x+1)+1/x+1/(x^2+1)$. Integrating, we get $\ln(x^2+x)+\tan^{-1}(x)$ and then we plug in x=1 to $x=\sqrt{3}/3$ to get $[\ln(\sqrt{3}/3+1/3)+\pi/4]-[\ln(2)+\pi/3] = \ln(\sqrt{3}/6+1/6)-\pi/12$

16. **B**

Taking the derivative of f(x) gives $12x^3+132x^2-24x-1440$. This factors into 12(x+10)(x+4)(x-3), so on the interval [0,1], f(x) is decreasing. By definition, a decreasing function is over approximated by a left hand riemann sum. (You can draw a decreasing curve and see that the riemann rectangles are taller than the curve). Therefore, II and III are correct.

17. E

Using the ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{4x^{n+1}}{(n+5)(n+4)!)}}{\frac{4x^n}{(n+4)!}}$$

This equals $\frac{x}{n+5}$. Since n is infinitely large, no set constant for x will result in a divergent series, so the bounds are $(-\infty, \infty)$.

18. D

Using $f(x) = (x^2+4)^{1/2}$, we find that f(0) = 2, f'(0) = 0, $f''(0) = \frac{1}{2}$. Thus the second degree polynomial is $2 + \frac{1}{4}x^2$. Taking the integral, we get $2x + \frac{1}{12}x^3$. Plugging in x = 2, we get 40/3.

19. C

The cost function is $C(x)=16(24-x)+20(x^2+400)^{1/2}$, we set $C'(x)=-16+10(x^2+400)^{-1/2}(2x) = 0$ and get x=80/3. We plug back into $\sqrt{(x^2+400)}$ and get 100/3

20. **D**

One can use the cosine double angle identity to make $\frac{1+\cos^2(x)}{2\cos^2(x)}$ which simplifies to $\frac{1}{2}\int \sec^2 x + \int \frac{1}{2}$ which equals $\frac{1}{2}\tan(x) + \frac{1}{2}x + C$ after integrating

21. A

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dt}\right)}{\frac{dx}{dt}} \qquad \frac{dy}{dt} = \frac{1}{1+t^2}, \frac{dx}{dt} = \frac{1}{t\ln 10} \qquad \frac{dy}{dx} = \frac{t\ln 10}{1+t^2} \text{ using}$$
quotient rule and dividing by
$$\frac{dx}{dt}, \frac{d^2 y}{d^2 x} = \frac{t(1-t^2)(\ln 10)^2}{(1+t^2)^2} \text{ and when } t = 2\sqrt{2} \text{ it is}$$

$$\frac{-14\sqrt{2}(\ln 10)^2}{81}$$

22. **A**

Using the shell method, the volume about the y-axis would be $2\pi \int_{1}^{5} x(\ln(x) + 5) dx$ if it were bounded by the x axis, but since the solid has a bottom boundary of y=2, our new

integral is
$$2\pi \int_1^3 x(\ln(x) + 5 - 2)dx$$
, so the volume is $60\pi + 25\pi \ln 5$.

23. A

Using the taylor series for e^x, we find that

$$e^{-x^2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^{2k}$$

Taking the integral from x=0 to x=3, we get

$$4\sum_{k=0}^{\infty} \left[\frac{(-1)^k}{k!(2k+1)} x^{2k+1} \right]_0^3$$

Which is the same as

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k+1)} 4 \cdot 3^{2k+1}$$

Factoring out a 3 from the exponent of 3^{2k+1} and then simplify 3^{2k} to 9^k which is answer choice A.

24. B

Since f(x) is odd,
$$-\int_{-2}^{0} f(x)dx = \int_{0}^{2} f(x)dx = 4$$
. We're given $\int_{0}^{8} f(x)dx = 21$
, so $\int_{2}^{8} f(x)dx = 17$. Next, we're given $\int_{0}^{-5} f(x)dx = 3$. Since we are moving
right to left and f(x) is odd $\int_{0}^{-5} f(x)dx = \int_{0}^{5} f(x)dx = 3$. Using that, we get
 $\int_{5}^{8} f(x)dx = 18 \int_{2}^{5} f(x)dx = \int_{2}^{8} f(x)dx - \int_{5}^{8} f(x)dx$ Therefore,
 $\int_{2}^{5} f(x)dx = 17 - 18 = -1$
25. E

The volume of a frustum is defined by $\frac{\pi h}{3}(R^2 + Rr + r^2)$, where R is the big radius, r is the small radius, and h is the height. Since the smaller radius is on the bottom, r always equals 10. Now we're only dealing with 2 variables. We can find h in terms of R because their ratio will be proportional to the ratio of the bowl. Therefore, we know that h=3/5 R. Our new volume formula is $V = \frac{\pi}{5}(R^3 + 10R^2 + 100R)$. Taking the derivative of both sides gets $\frac{dV}{dt} = \frac{\pi}{5}(3R^2\frac{dR}{dt} + 20R\frac{dR}{dt} + 100\frac{dR}{dt})$. Since we know that the height is 9 and h = 3/5 R, we know that R=15 cm. Plugging in with the fact that the volume changes at a rate of 12, we get $\frac{dR}{dt} = \frac{12}{175\pi}$. This is simply the integral of $f(x)-g(x) = x^2+x+3+1/x+1/x^2$ on the interval from -8 to -2. We have $1/3x^3+1/2x^2+3x+\ln(1x1)-1/x$ and can plug in the values of x = -2 and x = -8 and subtract.

27. **C**

 $AL = \int_0^{\sqrt{3}} \sqrt{\theta^2 + 1} \, d\theta \text{ using trig substitution of } \theta = tan(x) \text{ we get } AL = \int_0^{\frac{\pi}{3}} \sqrt{tan^2(x) + 1} \, \sec^2(x) dx = \int_0^{\frac{\pi}{3}} \sec^3(x) \, dx \text{ which can be rearranged by integration by parts and the identity } tan^2x + 1 = \sec^2x :$

$$AL = sec(x)tan(x) \left| \frac{\pi}{3} and 0 - \int_{0}^{\frac{\pi}{3}} sec(x)tan^{2}(x) dx \right|$$
$$= 2\sqrt{3} - \int_{0}^{\frac{\pi}{3}} sec(x)(sec^{2}(x) - 1) dx = 2\sqrt{3} - AL + \int_{0}^{\frac{\pi}{3}} sec(x) dx$$

sec(x) can be integrated into $\ln|\sec(x) + \tan(x)|$ so the final steps are $2AL = \sqrt{3} + \ln|\sec(x) + \tan(x)| |\frac{\pi}{3} \text{ and } 0 = 2\sqrt{3} + \ln(2 + \sqrt{3})$ thus $AL = \frac{1}{2}(2\sqrt{3} + \ln(2 + \sqrt{3}))$

28. C

The given integral is the same as $\int_0^1 \frac{1}{x} \sum_{n=1}^\infty \frac{(-1)^{n+1} x^n}{n} = \sum_{n=0}^\infty \frac{1}{(2n+1)^2} - \sum_{n=1}^\infty \frac{1}{(2n)^2}$ using the taylor series for ln(x+1).

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 which can be found with sine inverse maclaurin series.

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24}$$

$$\pi^2 = \pi^2 = \pi^2$$

$$\frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}$$

29.B

First we have ds/dt=4s. Integrating and simplifying we get s=Ce^{4t}. He's initially 3 ft³ so C=3 and we have s=3e^{4t} for first 5 seconds. Plugging in t=5, we get his size as 3e²⁰. The next five minutes require a new growth function. ds/dt=4s-8s². Integrating, we get ln[(s)/(2s-1)]=4t+C. Isolating s, we get s=(Ce^{4t})/(2Ce^{4t}-1). The initial s is 3e²⁰, which gives us C=(3e²⁰)/(6e²⁰-1). Over the next five seconds his size will be [(3e²⁰)/(6e²⁰-1)/(6e²⁰-1)] = $\frac{3e^{100}}{6e^{100}-6e^{20}+1}$.

30. D

Use partial fractions to get 1/(x+1)+2/(x+2) and integrate to get $\ln[(x+1)(x+2)^2]$. Plug in x=1 to get $\ln(18)$ and x=0 to get $\ln(4)$. Subtract to get $\ln(9/2)$.